Processing math: 100%

Exercise 3.2-7

Prove by induction that the ith Fibonacci number satisfies the equality

Fi=ϕi^ϕi5,

where ϕ is the golden ratio and ˆϕ is its conjugate.

For our base case, we need two values of F:

F0=ϕ0^ϕ05=115=0 F1=ϕ1^ϕ15=1+521525=1+51+525=2525=1

For the inductive step, recall that Fi=Fi1+Fi2 for i2:

Fi=ϕi1ˆϕi15+ϕi2ˆϕi25=ϕi1+ϕi2ˆϕi1ˆϕi25=ϕi2(ϕ+1)ˆϕi2(ˆϕ+1)5=ϕi2ϕ2ˆϕi2ˆϕ25=ϕiˆϕi5