Prove by induction that the ith Fibonacci number satisfies the equality
Fi=ϕi−^ϕi√5,
where ϕ is the golden ratio and ˆϕ is its conjugate.
For our base case, we need two values of F:
F0=ϕ0−^ϕ0√5=1−1√5=0 F1=ϕ1−^ϕ1√5=1+√52−1−√52√5=1+√5−1+√52√5=2√52√5=1For the inductive step, recall that Fi=Fi−1+Fi−2 for i≥2:
Fi=ϕi−1−ˆϕi−1√5+ϕi−2−ˆϕi−2√5=ϕi−1+ϕi−2−ˆϕi−1−ˆϕi−2√5=ϕi−2(ϕ+1)−ˆϕi−2(ˆϕ+1)√5=ϕi−2ϕ2−ˆϕi−2ˆϕ2√5=ϕi−ˆϕi√5