Processing math: 88%

Problem 3-1

Asymptotic behavior of polynomials

Let

p(n)=di=0aini,

where ad>0, be a degree-d polynomial in n, and let k be a constant. Use the definitions of the asymptotic notations to prove the following properties.

a. If kd, then p(n)=O(nk).

In order to show p(n)=O(nk) we must show that there exist positive constants c and n0 such that:

0p(n)cnk  nn00di=0ainicnk  nn00a0+a1n1+adndcnk  nn00a0+a1n1+adnd(di=0ai)nk  n1

Thus by setting c=di=0ai and n0=1 we conclude that kdp(n)=O(nk).

b. If kd, then p(n)=Ω(nk).

In order to show p(n)=Ω(nk) we must show that there exist positive constants c and n0 such that:

0cnkp(n)  nn00cnkdi=0aini  nn00cnka0+a1n1+adnd  nn00aknka0+a1n1+adnd  nn0

We do not need the entire summation, and can get away with setting c=ak to satisfy this inequality for all n01. Therefore kdp(n)=Ω(nk).

c. If k=d, then p(n)=Θ(nk).

In a and b we showed that p(n)=Ω(nk) and p(n)=O(nk) which is sufficient evidence that p(n)=Θ(nk).

d. If k>d, then p(n)=o(nk).

This is intuitive based on the proof in part a. Otherwise, we can use limits to formally prove this:

lim

e. If k < d, then p(n) = \omega(n^k).

This is intuitive based on the proof in part b. Otherwise, we can use limits to formally prove this:

\begin{equation} \begin{split} \displaystyle{\lim_{n \to \infty}} \frac{p(n)}{n^k} & = \displaystyle{\lim_{n \to \infty}} \frac{\sum\limits_{i=0}^{d}a_in^i}{n^k} \\ & = \displaystyle{\lim_{n \to \infty}} \frac{n^d}{n^k} \\ & = \infty \end{split} \end{equation}