Problem 3-2

Relative asymptotic growths

Indicate, for each pair of expressions \((A,B)\) in the table below, whether \(A\) is \(O\), \(o\), \(\Omega\), \(\omega\), or \(\Theta\) of \(B\). Assume that \(k \geq 1\), \(\epsilon > 0\), and \(c > 1\) are constants.

\[\newcommand\T{\Rule{0pt}{1em}{.3em}} \begin{array}{|c|c|c|c|c|c|c|c|} \hline & A & B & O & o & \Omega & \omega & \Theta \\ \hline \textbf{a.} \T & \lg^k n \T & n^\epsilon \T & \textrm{Yes} \T & \textrm{Yes} \T & \textrm{No} \T & \textrm{No} \T & \textrm{No} \\ \hline \textbf{b.} \T & n^k \T & c^n \T & \textrm{Yes} \T & \textrm{Yes} \T & \textrm{No} \T & \textrm{No} \T & \textrm{No} \\ \hline \textbf{c.} \T & \sqrt{n} \T & n^{\sin n} & \textrm{No} & \textrm{No} & \textrm{No} & \textrm{No} & \textrm{No} \\ \hline \textbf{d.} \T & 2^n \T & 2^{\frac{n}{2}} \T & \textrm{No} & \textrm{No} & \textrm{Yes} & \textrm{Yes} & \textrm{No} \\ \hline \textbf{e.} \T & n^{\lg c} \T & c^{\lg n} \T & \textrm{Yes} & \textrm{No} & \textrm{Yes} & \textrm{No} & \textrm{Yes} \\ \hline \textbf{f.} \T & \lg{n!} \T & \lg{n^n} \T & \textrm{Yes} & \textrm{No} & \textrm{Yes} & \textrm{No} & \textrm{Yes} \\ \hline \end{array}\]

I have included informal discussions of how I reached the answers in this table.

a. Note that \(\lg^kn = (\lg n)^k\). Intuitively, because both \(k\) and \(\epsilon\) are constants, it must be the case that \(B\) is a strong upper bound of \(A\).

b. \(A\) is a variable to a constant power while \(B\) is a constant to a variable power. It is immediately clear that \(B\) represents a strong upper bound of \(A\).

c. \(A\) slowly but steadily increases while \(B\) actually oscilates between \(n^{-1}\) and \(n^{1}\) which means \(A\) is not asymptotically bound by \(B\) at all.

d. \(B\) intuitively represents the same function as \(A\) with a lower exponent, therefore it represents a strong lower bound of \(A\).

e. Based on the identity \(a^{\log_bc} = c^{\log_ba}\) these two functions are asymptotically equivalent.

f. This one threw me for a loop because intuitively it really seems like \(B\) grows much faster than \(A\) when in fact they are asymptotically equivalent. Consider the identity \(\lg(n!) = \Theta(n \lg n)\) alongside our ability to manipulate \(\lg(n^n) = n \lg n = \Theta(n \lg n)\). I went so far as to graph the two equations to see that while \(B\) is always larger than \(A\), it grows at an identical rate. Fascinating.