Draw a picture of the sequence 〈 13, 4, 8, 19, 5, 11 〉 stored as a doubly linked list using the multiple-array representation. Do the same for the single-array representation.
For the multi-array representation, let \(L = 4\)
\[\newcommand\T{\Rule{0pt}{1em}{.3em}} \begin{array}{|c|c|c|c|c|c|c|} \hline & 1 & 2 & 3 & 4 & 5 & 6\\ \hline next & 6 & / & 2 & 1 & 3 & 5 \\ \hline key & 4 & 11 & 5 & 13 & 19 & 8 \\ \hline prev & 4 & 3 & 5 & / & 6 & 1 \\ \hline \end{array}\]For the single-array representation, let \(L = 10\).
\[\newcommand\T{\Rule{0pt}{1em}{.3em}} \begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21\\ \hline A & 4 & 19 & 10 & 19 & 13 & 19 & 11 & / & 13 & 13 & 1 & / & 5 & 7 & 4 & & & & 8 & 4 & 1\\ \hline \end{array}\]