Exercise 11.2-2

Demonstrate what happens when we insert the keys 5, 28, 19, 15, 20, 33, 12, 17, 10 into a hash table with collisions resolved by chaining. Let the table have 9 slots, and let the hash function be \(h(k) = k\) mod \(9\).

\[\begin{array}{c|lcr} T & & & \\ \hline 0 & & & \\ 1 & \rightarrow \begin{array} {|r|r|}\hline / & 10 & \rightarrow \\ \hline \end{array} & \begin{array} {|r|r|}\hline \leftarrow & 19 & \rightarrow \\ \hline \end{array} & \begin{array} {|r|r|}\hline \leftarrow & 28 & / \\ \hline \end{array} \\ 2 & \rightarrow \begin{array} {|r|r|}\hline / & 20 & / \\ \hline \end{array} & & \\ 3 & \rightarrow \begin{array} {|r|r|}\hline / & 12 & / \\ \hline \end{array} & & \\ 4 & & & \\ 5 & \rightarrow \begin{array} {|r|r|}\hline / & 5 & / \\ \hline \end{array} & & \\ 6 & \rightarrow \begin{array} {|r|r|}\hline / & 33 & \rightarrow \\ \hline \end{array} & \begin{array} {|r|r|}\hline \leftarrow & 15 & / \\ \hline \end{array} & \\ 7 & & & \\ 8 & \rightarrow \begin{array} {|r|r|}\hline / & 17 & / \\ \hline \end{array} & & \\ \end{array}\]