\[h(61) = \lfloor 1000 (\frac{61 (\sqrt{5} - 1)}{2} \text{ mod } 1 ) \rfloor = 700\] \[h(62) = \lfloor 1000 (\frac{62 (\sqrt{5} - 1)}{2} \text{ mod } 1 ) \rfloor = 318\] \[h(63) = \lfloor 1000 (\frac{63 (\sqrt{5} - 1)}{2} \text{ mod } 1 ) \rfloor = 936\] \[h(64) = \lfloor 1000 (\frac{64 (\sqrt{5} - 1)}{2} \text{ mod } 1 ) \rfloor = 554\] \[h(65) = \lfloor 1000 (\frac{65 (\sqrt{5} - 1)}{2} \text{ mod } 1 ) \rfloor = 172\]Consider a hash table of size \(m\) = 1000 and a corresponding hash function \(h(k) = \lfloor m (k A \text{ mod } 1) \rfloor\) for \(A = ( \sqrt{5} - 1)/2\). Compute the locations to which the keys 61, 62, 63, 64, and 65 are mapped.